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SUMMARY

We present a technique for the evaluation of linear-functional outputs of parametrized elliptic partial
differential equations in the context of deployed (in service) systems. Deployed systems require real-time
and certified output prediction in support of immediate and safe (feasible) action. The two essential
components of our approach are (i) rapidly, uniformly convergent reduced-basis approximations, and (ii)
associated rigorous and sharp a posteriori error bounds; in both components we exploit affine parametric
structure and offline—online computational decompositions to provide real-time deployed response. In this
paper we extend our methodology to the parametrized steady incompressible Navier—Stokes equations.

We invoke the Brezzi—Rappaz—Raviart theory for analysis of variational approximations of non-linear
partial differential equations to construct rigorous, quantitative, sharp, inexpensive a posteriori error
estimators. The crucial new contribution is offline—online computational procedures for calculation of
(a) the dual norm of the requisite residuals, (b) an upper bound for the ‘L*(Q) — H'(£2)’ Sobolev
embedding continuity constant, (c¢) a lower bound for the Babuska inf-sup stability ‘constant,” and (d)
the adjoint contributions associated with the output. Numerical results for natural convection in a cavity
confirm the rapid convergence of the reduced-basis approximation, the good effectivity of the associated
a posteriori error bounds in the energy and output norms, and the rapid deployed response. Copyright
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774 K. VEROY AND A. T. PATERA

1. INTRODUCTION

We consider here the parametrized steady incompressible Navier—Stokes equations: Given
UEZDCR’, we find a u®(n) in X such that g(u(p),v; ) =0, Yo € X. Here, u represents an
input parameter; & is the associated parameter domain; u°(u) = (u5(p),u5(p)) is the velocity;
X() is an appropriate divergence-free space (in Reference [1] we consider treatment of
the pressure and hence non-divergence-free velocity spaces); {2 C R? is the spatial domain, a
typical point of which shall be denoted x =(x;,x;); and g is the weak form of the Navier—
Stokes equations. Our interest is typically not in the velocity field per se, but rather in a (say,
single) output s°(u) expressed as L(u°(w)); in this paper L is a bounded linear functional,
though more generally we may consider non-linear outputs. We thus arrive at an implicit
input—output relationship p— s°(pt), evaluation of which requires solution of the underlying
partial differential equation.

Our (or an) interest is in ‘deployed’ systems: systems that are in service, in operation, in
the field. Typical computational tasks include parameter estimation (inverse problems) and
adaptive design (optimization) in support of an action. The computational requirements on
the forward evaluations u— s°(u) are formidable: the evaluation must be real-time—as the
action must be immediate; and the evaluation must be certified (endowed with a rigorous
error bound)—as the action must be safe and feasible.

The two essential components of our approach are (i) rapidly, uniformly convergent reduced-
basis (RB) approximations, and (ii) associated rigorous and sharp a posteriori error bounds;
in both components we exploit affine parametric structure and offline—online computational
decompositions to provide extremely rapid deployed/marginal response time. (Low marginal
cost implies low asymptotic average cost; our methods are thus also relevant to non real-time
many-query applications.) RB approximation [2—7] takes advantage of the dimension reduc-
tion afforded by the (smooth) parametrically-induced solution manifold: successful application
to the incompressible Navier—Stokes equations [8—10] is well documented; our emphasis is
thus on the development and application of rigorous a posteriori error estimation procedures.

To construct our a posteriori estimators, we invoke the Brezzi-Rappaz—Raviart (BRR)
theory for analysis of variational approximations of nonlinear partial differential equations
[11-14]. Typically, the BRR framework provides a non-quantitative a priori or a posteriori
justification of asymptotic convergence. In our context, the challenge—and contribution—is the
development of actual a posteriori error estimators that are rigorous, quantitative, sharp, and
inexpensive (real-time); we shall see that the RB/offline—online context is a unique opportunity
to render the BRR theory completely predictive.

Our key new ingredients are appropriate approximations and associated offline—online com-
putational procedures for calculation of (a) the dual norm of the requisite residuals, (b) an
upper bound for the ‘L*(Q2) — H'(2)’ Sobolev embedding continuity constant [15,16], (¢)
a lower bound for the Babuska inf-sup stability factor, and (d) the adjoint contributions
associated with the output. Our constructions, applied to the Burgers problem in Reference
[17], derive from our earlier work on RB a posteriori error estimators for somewhat simpler
parametrized elliptic equations: coercive linear [18], non-coercive linear [1, 19], and monotonic
non-linear problems [19].

In Section 2 we present our model problem, in Section 3 we summarize the RB approxi-
mation, in Section 4 we develop the a posteriori error estimators and in Section 5 we present
numerical results.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773-788
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2. NATURAL CONVECTION AT Pr=0

We consider the problem of natural convection at Prandtl number Pr=0 (see Reference [1] for
treatment of Pr # 0) in a cavity Q2 =[0,4] x[0,1] [20, 21]: Given p = Gr (the Grashof number)
in 2=[1,10°], we find a velocity u°(Gr)€ X such that g(u°(Gr),v; Gr)=0, Yve X. Here, X
is the divergence-free subspace of (Hj(£))? imbued with inner product (w,v)y = Jo vijwi s
(here v;; denotes Jv;/0x; and repeated physical indices imply summation) and norm

[Iw|lx =+/(W,w)x; and g(-,-; Gr): X x X — R is given by
g(w,v; Gr) = ap(w,v) + 3 a1(w,w,v) — Gr F(v) (1)

where ao(w,v)= [, v;;wi; (bilinear), a;(w,z,v)= — [, vi; (wiz;+w;z;) (trilinear), and F(v) =
1 Joxiv, (linear bounded).* For our output we take s°(Gr)=L(u°(Gr)), where L(v)=
|Qm\“fgm vy; here; 2,,=]0.85,1.15[x ]0.42,0.58[ is a small measurement region of area
|2,,]=4.7x 1072

We next introduce a ‘truth’ finite element approximation space® Y C X of dimension .4~
(with inner product and norm inherited from X). Our ‘truth’ approximation is then given
by u(Gr)eY, s(Gr)€ R, where g(u(Gr),v;Gr)=0, Yve Y, and s(Gr)=L(u(Gr)). We shall
build our RB projection upon (and measure our RB error with respect to) this discrete truth
approximation; we thus assume that /" is sufficiently large that ||u(Gr)—u®(Gr)||x and |s(Gr)—
s¢(Gr)| is acceptably small for all Gr € Z (see Reference [22] for relevant a posteriori error
estimation procedures). Clearly, our formulation must be stable and efficient as A" — occ.

For given z€ Y, we define the derivative bilinear form dg(-,;z):Y x Y - R as

dg(w,v;z)=ae(w,v) + a;(w,z,v) (2)
such that
g(z +w,v; Gr) = g(z,v; Gr) + dg(w, v;2) + 5 ar(w,w,v) (3)

The inf-sup parameter and continuity constant are then given by p(z)= inf,cy sup,y
dg(w,v;z)/||w|y|lv]ly and y(z)= sup,cy sup,cy dg(w,v;z)/||w||y|v|ly, respectively. We note
from the Holder inequality that

jar(w,z,0)| < p?|wllyllz]lv[lolly 4)

and hence that y(z)<1 + p?|z||y; here,

pzﬁsuly)||v||L4(Q)/||U||Y ®)
ve

is a Sobolev embedding constant [15, 16] and |[v||zr) = ([, (viv:)??)V/P.
We shall make two (verifiable) hypotheses on the form of our problem and associated
solutions. The first hypothesis, H-I, is affine parameter-dependence: g(w,v; Gr)= Ele@q(Gr)

fWe choose the scaling of Reference [20]; the alternative scaling of Reference [21] may enjoy some conditioning
advantages [1].

§We choose Y to be the (discretely) incompressible space of dimension .#"=4762 derived from a Taylor-Hood
P, — P, approximation space [8] with 5538 velocity and 776 pressure degrees-of-freedom.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773-788
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Figure 1. Plots of: (a) velocity profiles for Gr=1.0 and 1.0 x 10°; and (b) the output s(Gr).

gq(w,v), where ©,:Z—R and g,: Y xY =R, g=1,...,0, are Gr-dependent functions and
Gr-independent forms, respectively. For our particular problem it is very simple to verify
H-I a priori: Q=2. Our second hypothesis, H-II, is related to well-posedness: our manifold
{u(Gr)|Gr € 2} is a nonsingular (isolated) solution branch; thus S(u(Gr))= >0, VGr€ 2.
We can verify H-II a posteriori.

Our truth solutions confirm the flow behaviour previously reported for this model natural-
convection problem [20, 21]. For low Gr the flow is single-cell; at higher Gr the flow smoothly
evolves to a three-cell pattern [20, 21]—the three-cell pattern is ‘clearly identifiable’ only for
Gr>=5.0 x 10*. For lower Gr the flow is essentially Stokes; significant inertial behaviour is
first evinced at Gr=10*. We show in Figure 1(a) ux(x; €[0,4],x,=1;Gr)/Gr for Gr=1
and Gr=10%; and in Figure 1(b) we present s(Gr) for Gr €[1,10°]. The output—chosen to
reflect the one-cell to three-cell transition—is not too remarkable, with deviations from the
Stokes limit only for Gr € [10%,10°]Y (see Reference [1] for a more interesting Pr # 0 Nusselt
output).

3. REDUCED-BASIS APPROXIMATION

3.1. Formulation

We first introduce positive integers N <Np.x and associated index sets N={1,...,N} and
Nmax ={1,..., Nmax }- Then, given prescribed parameter points Gr”" € 2, 1 <n< Ny, We intro-
duce nested parameter samples Sy ={Gr!,...,Gr"} and associated nested Lagrangian [7] RB
spaces Wy =span{{, =u(Gr"),1 <n<N} for 1 <N <N (In practice, the basis functions are
Gram—Schmidt orthogonalized with respect to (-,-)y.)

9To achieve high accuracy and in particular rigorous error bounds we must approximate u(Gr) and only then
s(Gr)=L(u(Gr)); the relatively complex parametric dependence of the former (Figure 1(a)), not the relatively
simple parametric dependence of the latter (Figure 1(b)), thus determines the difficulty of the RB task.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773-788
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The RB (Galerkin) approximation uy(Gr)e Wy, sy(Gr)€eR, then satisfies g(un(Gr),
v;Gr)=0, Yoe Wy, sy(Gr)=L(uy(Gr)). The critical observation is that the solution u(Gr)
resides on a one-dimensional smooth manifold. (The regularity of the velocity field in Gr
may be deduced from the equations for the sensitivity derivatives; the stability and continuity
properties of dg are crucial.) Thus, by restricting attention to this parametrically-induced man-
ifold, we can very accurately approximate u(Gr), VGr € &, by a space of dimension N<.A".
We confirm this conjecture empirically in Section 5.

3.2. Offline-online decomposition

The critical computational kernel—and dominant computational complexity—is the inner
Newton iteration for uy(Gr). We pursue an offline—online computational procedure [4, 9, 19, 23];
detailed development for the (analogous) Burgers equation is described in Reference [17]
and for Navier—Stokes in Reference [1], and we thus restrict ourselves here to a brief
summary.

In the offline stage, performed once, we (i) solve for the RB functions {,,, Vn € N, at cost
O(Nmax-"N5)—here -NS refers to a scaling exponent (> 1) associated with the truth approx-
imation Navier—Stokes solution procedure, and (ii) form the parameter-independent matrices
and vectors required by the Newton kernel, at dominant cost (exploiting sparsity) O(N3 ., .A").
In the online stage—performed many times, for each new value of Gr—we simply assemble
and invert the requisite (dense) N x N Jacobian, at total cost O(N?>).!l The online complexity
is independent of .V, yielding extremely fast deployed response.

3.3. A dual problem

We shall also need a dual problem [18,24,25] associated with our output functional L.
Towards that end, we first introduce an adjoint YV (Gr)€ Y satisfying the linear problem

dg(@. ¥ (Gr);un(Gr) + 3 €"(Gr)= — L(¢), Voe¥ (6)

where uy(Gr)€ Wy is our RB approximation of Section 3.1 and e"(Gr)=u(Gr) — uy(Gr);
well-posedness is discussed in Section 4.1.1. We may now readily demonstrate (under the
assumption that uy(Gr) and YV (Gr) exist)

Lemma 1
For any y €Y, s(Gr) — sy(Gr) = g(un(Gr), 1; Gr) + g(un (Gr), ¥V (Gr) — 1; Gr).

Proof

The proof is a particular case of a more general result for adjoint approximations for non-
linear problems [25]. We note that —L(e"(Gr))=dg(e"(Gr), YV (Gr);un(Gr)+1 e¥(Gr))=
ao(e" (Gr), Y™ (Gr))+ai(e"(Gr),uy(Gr)+ 5 eV (Gr), YN (Gr)) = ao(u(Gr) —uy(Gr), YV (Gr)) +
a(u(Gr) — uN(Gr),%(u(Gr) + uy(Gr)),y¥(Gr)); but by symmetry of a; with respect to

IIAs an example of assembly, we consider the representative Jacobian term  a;(Suy,iy, ()=

;y:] ZkN:I itNkal(C,-,ék,C,-)éuNi,-, 1<Z<N (*), here ljl/\/ :ZkN:] ﬁNA'Ck and 51,{]\/ :Zj-v:] 5“/\/‘/4’] are the pre-
vious iterate and current update, respectively. In the offline stage we form and store a;((;, {x, (i), 1 <i, j,k <Nmax;
in the online stage we perform the i1y, duy-weighted sum (x)—at cost O(N?).

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773-788
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the first two arguments, a;(u(Gr) — uy(Gr), 3(u(Gr) + uy(Gr)), Y™ (Gr)) = § a;(u(Gr), u(Gr),
YN(Gr)) — 5 ar(un(Gr),un(Gr), Y (Gr)); hence —L(e"(Gr)) = GrF(y"(Gr)) — [ao(un(Gr),
YN (Gr))+ 1 ar(uy(Gr),un(Gr), YN (Gr))] = — g(un(Gr), " (Gr); Gr). The result then follows
from linearity of g(w,v; Gr) in v. O

Lemma 1 shall be important in developing our a posteriori output error estimators.
To construct our output error estimators we shall also require an RB adjoint approxima-
tion: Given prescribed parameter points Gri" € &, 1<n<N& , we introduce nested parameter

max?

samples S, :{Grduv‘,...,Grd“*’Vd"} and associated nested RB spaces W, = span{¢, = Vm=
(Grivm), 1<n<N®} for 1<N®<NS: Yl (Grye Wk, then satisfies dg(,y).(Gr);
uny(Gr))= — L(p), Vo€ W;}E}u This RB dual problem readily admits an offline—online de-
composition; the online effort to compute Y, (Gr) will typically be considerably less than
the online effort to compute uy(Gr), since the former is equivalent to a single Newton iteration

of the latter.

4. A POSTERIORI ERROR ESTIMATION

We first motivate the need for a posteriori error estimation. Given a RB solution uy(Gr), many
questions can arise: Is there even a solution u(Gr) near uy(Gr)?; Is [s(Gr)—sy(Gr)| <&}, (the
maximum acceptable error)?; Is s(G7) < Ceonstraine (S2Y, @ feasibility condition in a design opti-
mization)? If these questions cannot be answered, we may propose the wrong—and potentially
unsafe or infeasible—action in the deployed context. A fourth question is also important: Is N
too large, |s(Gr) — sy(Gr)|<es,, with an associated steep N* efficiency penalty? In this case,
an overly conservative approximation may jeopardize the real-time response and associated
action. Finally, we may also consider the efficiency of the samples Sy and associated RB
spaces Wy: Do we satisfy our global ‘acceptable error level’ condition, |s(Gr)—sy(Gr)| <&l
VYGr € 9, for (close to) the smallest possible value of N?

In short, the essentially ad hoc nature of RB discretizations, the strongly superlinear scaling
(with V) of the RB online complexity, and the particular needs of deployed real-time systems
demand rigorous and quantitative a posteriori error estimators.

tol>

4.1. Brezzi-Rappaz—Raviart theory

4.1.1. Energy bounds. We first define the dual norm of the residual, ex(Gr)= sup,., g(uy
(Gr),v; Gr)/||v|ly, and the inf-sup and continuity constants associated with the derivative at
un(Gr), pn(Gr)=P(un(Gr)) and yn(Gr)=y(un(Gr)), respectively. We further introduce a
lower bound for fy(Gr) (to be developed in Section 4.2.3), ﬁN(Gr) we require 0<ﬁN(Gr)<
pn(Gr), VGre 2.

We next introduce the key parameters required by the BRR theory [11-13]. First, we define
a proximity indicator (a ‘non-dimensional’ measure of the residual), tn(Gr)=2p%ey(Gr)/

B,zv(Gr). Second, we define our bound for the error in the Y norm as

An(Gr)=By(Gr)p~2(1 — /1T - tn(Gr)) (7)

We can now state [12, 14].

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773-788
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Proposition 2.1 .
For 1y(Gr)<1, there exists a unique solution u(Gr)e #(uy(Gr),y(Gr)/p?), where
B(z,r)={yeY|||y —z|ly <r}; furthermore, ||u(Gr)— uy(Gr)||y <Ay(Gr).

Proof

Our demonstration is only a very minor variation on the proof given in Reference [12, Theorem
2.1]; we simply specialize the general result to our particular problem [17]. (Note also that our
context is finite-dimensional—since our bounds are with respect to the truth approximation—
and hence various hypotheses simplify.) We first note from (1), (2), and (4) that

1
gw?,v; Gr) — g(w',v; Gr) = / dg(w? —wh o, w! +t(w? —w'))de (8)
0

and
|dg(w,v;2%) — dg(w, v;2")| = lar(w, 2> = 2!, v)| < p?[wlly[[vlly 2% = z'I¥ )
We next introduce the operator H% (w), we Y — H% (w)€ Y, defined as
dg(H (w),v; un(Gr)) =dg(w, v;uy(Gr)) — g(w,v; Gr), YveY (10)

note (10) is well-posed for all w e Y (finite-dimensional) thanks to our hypothesis 7y(Gr)<1
and hence By(Gr)>0. A fixed point of H(w), H®(w*)=w*, implies a zero of g,
gw*,v;Gr)=0, YveY.

We now consider w! € B(uy(Gr); o), w? € B(un(Gr); o). It follows from (8)—(10) that
|97 (w2 )~ HO(w) [y < (p/ y(Gr)|w? —w! 2 hence [[H9"(w2) —~ HO" (Y < [lw? —w' |
for all a€[0,By(Gr)/p*[. We can further prove that, for w € Z(uy(Gr), ),

R 1
IH (W) — un(Gr)lly < By(Gr)~ (en(Gr) + /0 P21t(w — un(Gr))|y[w — un(Gr)||y dt)
< By (Gr) N(en(Gr) + L p*a?)

hence H%(w) maps ZA(uy(Gr),a) into itself for all aec[Ay(Gr),y(Grp=2(1 +
v/1—15(Gr))]. We can thus conclude from the contraction mapping theorem that for all
0 € [An(Gr), By(Gr)p2[ there exists a unique solution u(Gr)eZ(uy(Gr),«) satisfying
g(u(Gr),v; Gr)=0, Yve Y. This completes the proof. |

We may also now readily prove

Corollary 2.2
For ty(Gr) <1, B(u(Gr))=By(Gr)/v2.

Proof
It follows directly from Theorem 2.1 and Equation (1.2) of Reference [12] that, for
Br(Gr) " p2|u(Gr)—un(Gr) |y <1, B(u(Gr)) =P (Gr)—p*|u(Gr)—u(Gr)|ly. However, from

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773-788
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our Proposition 2.1 and (7) (for ty(Gr)<3) p?|u(Gr) — uN(Gr)||Y<ﬁ~N(Gr)(1 - \/g); thus
Bu(Gr)) = By (Gr)(1 = (1 = /1) =B (Gr)/V2. O

Corollary 2.2 is essential in confirming Hypothesis H-II, providing a sufficient (though not
necessary) condition for the well-posedness of the truth approximation. (Corollary 2.2 also
demonstrates existence and uniqueness of Y (Gr) of (6) for ty(Gr)<1.)

Finally, we may bound the effectivity ny(Gr)=An(Gr)/||e¥(Gr)|ly (recall eN(Gr)=
u(Gr) — uy(Gr)) in

Corollary 2.3 :
For ty(Gr) <3, nv(Gr)<4ky(Gr), where ky(Gr)=yy(Gr)/By(Gr).

Proof
We first note from standard duality arguments that ey(Gr)=|e"(Gr)|ly, where e¥(Gr)eY
satisfies

&N (Gr),v)y = — g(un(Gr),v;Gr), YveY (11)
It then follows from (3) for z=uy(Gr) and w=e"(Gr) that g(u(Gr),v;Gr)=
g(un(Gr),v; Gr) + dg(e"(Gr), v;un(Gr)) + % a1(e¥(Gr),e"(Gr),v), and hence [eV(Gr)|ly <
wn(Gr)|[eN(Gr)lly + § p*|le¥(Gr)||}. We now bound (for tn(Gr)<1) |le¥(Gr)|ly <Ay(Gr)
and (from (7)) An(Gr)<2en(Gr)/By(Gr) to deduce that 1 Ay(Gr)<yn(Gr)fy(Gr)™
N (Gr)||y+p2en(Gr)fy(Gr)~2Ay(Gr). However, from our assumption on Ty(Gr), we obtain
p*en(Gr)/ Bi,(Gr): 3 v(Gr)< %; the desired result directly follows. |

Corollary 2.3, which provides a lower bound for |e"(Gr)|y, relates to the sharpness of
Ay(Gr); in Section 5 we provide a more quantitative discussion.

4.1.2. Output bounds. We first introduce the adjoint (or dual) residual, R;‘\}'L;“N (p;Gr)=
— L(p) — dg((p,w]’v‘{m(Gr);uN(Gr)), Yo e€Y; the adjoint residual dual norm sﬂ}i,’uN(Gr)E
Sup,,c y Rﬁ,“d’uN(m; Gr)/|l¢|ly; and, for Ty(Gr)<1, the adjoint error bound,

2e8uN 1 — /T —1y(Gr)
AW (Gr)= = N 2 (G 12
wi (G Br(Gr)(1 + oG 1+ 1—TN(Gr)WN (Gl (12)

Our output error bound is then given by A ,..(Gr)=||L||y'Ay(Gr) for N® =0 (a notational
convenience), and

A ya(Gr) = [g(un(Gr ), Y (Gr); Gr)| + en(Gr)ARLY (Gr) (13)

Ndu

for I SN® <Ngi; here |[L||yr = sup,cy L(¢)/||@|ly is independent of Gr. (The only new com-

max?>

putational ingredients are sflvlf;uN (Gr), ||¢]\%U(Gr)||y, and |g(un(Gr), gb]\%u(Gr); Gr)l.)
We may now prove

Lemma 3.1
For ty(Gr) <1, YN (Gr) — Y. (Gr)lly <AL (Gr).

Ndu

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773-788
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Proof

We note that y"(Gr) — Y, (Gr) satisfies dg(o, Y™ (Gr) — Y. (Gr); un(Gr)) :Rfv‘ﬁuN((p; Gr) —

3 ai(@,eN(Gr), YN (Gr) — Y. (Gr)) — 5 ai(@,e"(Gr),¥).(Gr)); the result then follows from

(4), Proposition 2.1, (7), and (12). |
And thus

Proposition 3.2

For ty(Gr) <1, |s(Gr) — sn(Gr)| < A}, ya(GF).

Proof

For N =0 we invoke continuity of L and Proposition 2.1; for N% >0 we invoke Lemma 1

(for x =y,).(Gr)), Cauchy-Schwarz, Lemma 3.1, and (13). |

In Section 5 we shall investigate the effectivity of this output error bound.

4.2. Construction of error estimators

The framework described above is essentially the nonlinear extension of the much simpler
linear a posteriori error estimator result |u(Gr) — uy(Gr)||y <en(Gr)/ ﬁN(Gr) [19]—to which
our non-linear error estimator, Ay(Gr), reduces in the limit that &y(Gr) tends to zero. The
challenge, as in the linear case [18,19], is the development of calculable, predictive error
estimators: error estimators that are quantitative, rigorous, sharp, and inexpensive—online
complexity independent of 4.

4.2.1. The dual norm of the residual(s). We now consider the calculation of &ey(Gr)=
1N (Gr)|ly. We first note from (11) that eV(Gr)e Y satisfies

(&"(Gr),v)y = GrF(v) — 3 ao(Cu, v)un n(Gr)

=S 3 L ai (G, G, V)un u(GFuy w (GF), VoY (14)

n n

where ) with no upper limit explicitly provided shall denote ZZZI. (We recall that uy(Gr)
may be expressed as > uy,(Gr)(,.) It follows from linearity that &"(Gr)=
Grz® + 3 Zluy (Gr) + 32,3, 22, un o(Gr)uy »(Gr), where 2°€ Y satisfies (2°,0)y = F(v),
YveY, zl €Y satisfies (2),v)y = —aog({n,v), V0E Y, Vi € Niux, and 22, € Y satisfies (22,,,v)y =
— 2 a) (8, Gw,v), YOEY, Vn,n' e NZ,,. We thus obtain

max*

||éN(Gr)||2Y =Gri2% 2%y + > unn(Gr) {2Gl”(20,2£)y + Z: uy . (Gr) {ZGr(EO,éﬁn,)y

+CELEDy + 3 uy e (Gr) {2(2,1,25,n,,)y
n//

SRR a5

which is a nested quadruple sum.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773-788
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The offline—online decomposition is now clear. In the offline stage, performed once, we (i)
solve for the 2%, 2, Vn € Npax, and 22, Vn,n’ € N2, at dominant cost O(N2 A" ?°)—here -Po
refers to a scaling exponent (> 1) associated with the (divergence-free) truth-approximation
Poisson solution procedure, and then (ii) form the relevant parameter-independent inner prod-
ucts, (2°,2%)y,...,(22,.2%,)y, Yn,n',n” 0" € N3 ., at dominant cost (exploiting sparsity)
O(N2 ). In the online stage—performed many times, for each new value of Gr—we sim-
ply evaluate the requisite quadruple sum, (15), at dominant cost O(N*). The online complexity
is independent of ./: although the N* scaling is less than pleasant, in practice N is quite
small; furthermore, this calculation is invoked only once (in contrast to the Newton kernel).
We may develop a similar procedure for the dual norm of the adjoint residual, 2% (Gr); the

N iu
online complexity is O(N2(N)?), independent of .4".

4.2.2. The Sobolev constant. In actual practice, and solely for simplicity, we compute an
upper bound for the Sobolev constant p, replacing (the divergence-free space) ¥ with ¥ =
[(H} () luwum; in order to avoid excessive nomenclature, we simply redefine p=
V2 sup,cy 0]l 2 y/|lv]ly. As our point of departure, we note [15,16] that p=(2/Amin)"?
where (4, ¢)e(R,,Y) satisfies the Euler—Lagrange equation (¢,v)y = dfo @001, Yve Y,
||qA5||‘L‘4(Q) =1, and ()tmm, qASmin) denotes the ground state. To solve this non-linear eigenproblem,
and in particular to ensure that we realize the ground state, we pursue a homotopy procedure.

Towards that end, we introduce o€ [0, 1] and associated increment Aax<1: (A(a), Pp(x)) €
(R,,Y) then satisfies

(o), v)y = A() (a/g%(a)(f)j(a)d)i(a)vi + (1= 06)/Q dh(ot)vi) , wwe¥

°‘||¢||24(52) +(1 - 0‘)”‘15“%2(52) =1 (16)

(Amin(®), min(2)) shall denote the ground state. We observe that (Anin(1), Pmin(1))=
(ﬂ:mm, q[;mm ), and that (Anin(0), dmin(0)) is the lowest eigenpair of a standard (vector) Laplacian
eigenproblem. Our homotopy procedure is simple: we first set o°¢=0 and find
(Zmin(0), Pmin(0)) by standard techniques; then, until ™% =1, we set o™ < o4 4 Ao, solve
(16) for (Amin(0"™%), Pmin(™™)) by Newton iteration initialized to (Amin(°'), Pmin(«®')), and
update o< o™, For our particular domain, we find (offline) p=0.4416; since p is
parameter-independent, no online computation is required.

4.2.3. The inf-sup lower bound. We now consider the construction of [?N(Gr), a lower bound
for fy(Gr). We note that, in contrast to p, fy(Gr) must be calculated with respect to the
divergence-free space Y.

We first define, for given Gre &, the linear operator weY = TS'we Y as (T¢w,v)y =
dg(w,v;uy(Gr)), Yve Y. We then define, for € R and given Gr,

T (w,v;t;,Gr)= (TS w, T v)y

max

+tlai(woidy (Gr), TS v)+ar(v,uy (Gr), TS w)] (17)

max max max
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where uj_ (Gr)(=duy,,(Gr)/dGr)€ Wy,  satisfies  dg(iy,, (Gr),viux,, (Gr)=F(v),

Vv € Wy,,.. Next, for € R and given Gr, we introduce 7 (t; Gr)= inf,cy 7 (v,v;1; Gr)/||v[3,
and Oy (t; Gr) = p*|lun(Gr + t) — uy,, (Gr) — tul, (Gr)l|ly. Then

Lemma 4.1 o o
The function #(¢;Gr) is concave in t. Hence, given ¢ <ty, for all t€[t,0], F(t;,Gr)=
min{Z (t,; Gr),Z (t,; Gr)}.

Proof

We define o= (#, —1)/(t2 — ) €[0, 1] such that  =oz; + (1 — a)z,. It follows from (17) that

T (v,v;t;Gr) =T (v,0;t1; Gr)+(1—-a).T (v,0; 1; Gr) and hence F(t; Gr) = inf ey (a7 (v, 0; 1;

Gr)+(1—a)T (v,v; t2; Gr))/||v||3 = o (t1; Gr)+ (1 — ) F (tp; Gr) = min{ F (t,; Gr), F (t2; Gr)}.
1

We shall also need

Lemma 4.2 o o
For given Gre2, Gre 2, and t=Gr — Gr, the inf-sup parameter satisfies fy(Gr)=

— 03(6:Gr) + \/max {7 (6;Gr), 6%, (1Gr)}y 0.

Proof
We first define a(w) = ||Ty"wl|y/||w|y and express T\{"w =Ty" w4 (T{"w—T" w) to obtain

W)= {|TF wl} + |T¢w — TG w3 +2(TF w, T¢w — TZ w)y}/|lwl? (18)

max max max

We next note that, for t = Gr — Gr,

(T,g"axw, Tﬁ’w TG w)y = ar(w,uy(Gr) — uNm(E), TS w) = tay(w, uﬁvmax(@), TS w)

max max max

+ar(w,un(Gr) — un,, (Gr) — ty (Gr), T w) (19)

max ‘max

furthermore, from (4)

a1 (w, un(Gr) — uy,, (Gr) — tuly_ (Gr), T w)|

max

<on(t; Gr)|wly TS wly

max

<ow(t; Grwly (1T wlly + I T, w — TV wlly)

max

<G + 33t Grlwliy + ST w — T Wil (20)
We conclude from (17)—(20) that 6*(w) > (w,w; t; Gr)/|| w3 — 20x(t; Gr)a(w) — 83, (¢; Gr);
this quadratic inequality (recall o(w)>0) then yields o(w)= — on(t;Gr)
+\/max{f(w, w; t; Gr)/||wl|3, 0% (¢; Gr)}. It is readily shown [19] that By (Gr) = inf,cy a(w),
and hence By(Gr)= — dn(t; Gr) + \/max{gf’(t;@), 3%.(t; Gr)}. O

We may now construct our inf-sup lower bound, BN(Gr).
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We first introduce a partition 2, ={#/ E]@i,@i[,lé j<J} such that 2/ N @ =0,

1<j<j'<J, and UL, 7 =2, we further define log@/:%(log@/, + log@i), 1<j<dJ.
Then, for given Gr € &, our lower bound is

Bu(Gry= — on(t;Gr) + \/max{min{?(O; Gr), Z(t.; Gr)}, 6%(t; Gr)} (21)

where Gr :@]Gr, Gry = @iGr, t=Gr —Gr, t+ =Gry — Gr, and t, =t, (respectively, ¢_)
if t=0 (respectively, 1<0); here .#:2 —{1,...,J} is a mapping such that Gre 7. We

may then prove

Proposition 4.3 3
For all Gre 2, fn(Gr)=fy(Gr)=0.

Proof
The result directly follows from Lemma 4.1, Lemma 4.2, and (21). |

Proposition 4.3 only guarantees a lower bound; to ensure a good lower bound, our partition
must be sufficiently fine. We shall say that a partition 2; is eg-conforming if

Py, (Gr)= 8/f'ﬂNmax(@]Gr )N(>0), VGrez (22)

if (22) is not honoured for any &g €]0, 1[ there will exist Gr € Z for which the hypothesis of
Proposition 2.1, ty(Gr)<1, is not satisfied, and hence for which certification is impossible.
We now turn to the offline—online computational procedure. In the offline stage, performed
once, we (i) tabulate #(0;Gr')= (B}, (Gr')) and #(Gry — Gr;Gr'), 1</ <J, at domi-
nant cost O(3J.4"SV)**—here -SV refers to a scaling exponent (>1) associated with the
truth-approximation singular-value solution procedure, and (ii) form the Jy-related parameter-
independent inner products ({,,(y)y, Vn,n’ €N2_ ., at dominant cost (exploiting sparsity)
O(N2,..V). The properties of #(Gr — Gr;Gr) are crucial. First, #(Gr — Gr;Gr) is con-
cave in Gr — Gr: hence, a finite number of expensive evaluations suffice to rigorously con-
struct By (Gr). Second, #(Gr — Gr; Gr) is (sub-)tangent to %, (Gr) at Gr= Gr—the more
pessimistic bounds such as p appear only in the second-order correction, dy(Gr — Gr; Gr):
hence, J will be ‘small’ (for example, relative to simpler continuity constructions [17]). In
the online stage—performed many times, for each new value of Gr—we need only (i) find
Gr=.9Gr, at cost O(log J), and (ii) evaluate dy(Gr — Gr; Gr), at dominant cost O(N2,,).

4.3. Sampling procedure

We first construct our primal samples and spaces, Sy and Wy, 1 <N <Np.; we then select
our dual samples and spaces, St and Wk, I<N® <N . We pursue (very similar) greedy
optimization procedures [1] for both the primal and dual; in the interest of brevity, we consider
only the former here.

We first provide a random parameter test sample =t € (2)" of size nr, a ‘smallest (energy)
error tolerance’ &l relmin, and an initial sample Sy,; we further introduce—since uy,  (Gr) is

**In practice, to determine an gg-conforming partition #;,—that is, to find appropriate Gr/i, 1<j<J, such that
(22) is satisfied for prescribed eg €]0, 1[—we must perform additional singular value calculations.
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of course not yet available—ty(Gr) (respectively, Ay(Gr)) given by ty(Gr) (respectively,
Ay (Gr)) with ﬁN(Gr) replaced by a crude surrogate, f(Gr). We now recurse: Given a sample
Sy (initially, Sy,), we calculate Gr*=arg maxg ez, n(Gr) and Gr*=
arg Maxg, ¢ =ty (6r) <1 Anrel(Gr),  where Ay (Gr) = An(Gr)/||uy(Gr)|y; — mext, if
Ty (Gr*)>1 (respectively, Ty(Gr*)<1) we set GrV*! = Gr* (respectively, Gr¥N*! = Gr**) and
Sy11=8yUGrN*!; we then continue this process until N =Ny, such that Ty _ (Gr)<I,
VGr € =1, and maxg,ezs; Zwa,re](Gr)<8tol,rel’min. It is important to note that ZN(Gr) is an
accurate surrogate for the true error that can be calculated very efficiently—complexity inde-
pendent of .4/ —in the limit of many queries: only the selected (expensive) snapshots must
actually be computed; we may thus choose ny large.

In summary, we can expect that our sequence of spaces Wy will provide rapidly certifiable

(thanks to Gr*) and rapidly convergent (thanks to Gr**) approximations uniformly over 2.

5. NUMERICAL RESULTS

We set &l rel,min = 107¢ (see Section 4.3) and gg=0.5 (see (22)) to construct our RB (pri-
mal) sample and inf-sup partition, respectively; we obtain Np.x = 18 and J =39. To present
our numerical results we introduce a random test sample over &, Zrey € (Z)" of size
nrest =25 (note the sample is in lin(Gr), not log(Gr), and hence most of the points are
in the difficult range [10* 10°]); we further define ‘Maxg,” to be the maximum over all Gr
in Ere, and ‘Avgg,’ to be the average over all Gr in Srey. We shall discard all results
(N, Gr) € Njpax X Stese for which our a posteriori bounds are contaminated by round-off error;
our criterion is (||&Y(Gr)||y/||u(Gr)|ly)* <10 x 10~1€,

We first consider the ‘energy’ (or Y¥) norm. We present in Table I el p. =
MaXGr(HeN(GI")Hy/HM(GV)”y), TN, max EMaxG,rN(Gr), AijaX,RelEMaxG,AN(Gr)/Hu(Gr)Hy,
and 77y = Avg,nv(Gr), as a function of N; we recall that ny(Gr)= Ax(Gr)/|e¥(Gr)|ly. We
observe that the error decreases very rapidly; that the ‘certifiability’ hypothesis of Proposi-
tion 2.1, ty(Gr) <1, is satisfied uniformly over Zr.y for N =10; and that our error estimator
(when applicable) is indeed a strict and reasonably sharp upper bound—even
maxyen,, Maxg, 1y (Gr)=25.7 is well below the worst-case bound of Corollary 2.3.}3* Note
that for the rapidly convergent RB approximation, effectivities of O(10) suffice: for a given
accuracy &, N’ such that Ay.(Gr)=¢qz—our certifiably sufficient approximation—is only
slightly larger than N” such that ||e"” (Gr)||y = e—the actually sufficient approximation; the
‘error in the error’ can be large since the error itself decreases so quickly—this also justifies
our relatively crude inf-sup lower bound.

It is perhaps surprising that the BRR theory—not specifically designed for quantitative
application—indeed yields such sharp results. As already noted, as ey(Gr)—0, Ay(Gr)~

TtNevertheless, our sampling procedure is not infallible, and hence it is possible that we encounter (online) a
Gr' € 9 for which Ay(Gr’) is unacceptably large. In this event—note for purposes of rigor, sharpness, and effi-
ciency we always evaluate Ay(Gr) online for each new ‘deployed’ Gr value considered—we would need to return
to the offline stage and append Gr’ to our sample. To avoid the latter, we typically choose nt reasonably large and
&olrelmin conservatively small.

HNote Buye, (Gr) is unity for Gr € [1,10%] and then smoothly decreases for Gr>10* to 0.155 at Gr =10°; yy,,, is
unity for low Gr and then increases with Gr for Gr>10* to yy,, = 8.75 at Gr = 10°. Thus Corollary 2.3 predicts

(say for N = Nimax) a worst-case effectivity of 4yy(Gr=10%)/fy(Gr=105)=229.1.
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Table 1. Reduced-basis error, proximity measure, error bound, and effectivity as a function of N.

N eﬁax, Rel TN, max AN‘ max, Rel Ny

2 436x 107! 00 — —
4 1.51 x 107! 00 — —
6 451 %1072 00 — —
8 331 x 1072 468 x 107! — —
10 429 x 1073 5.44 x 107! 723 x 1073 7.00
12 232 %1073 1.61 x 107! 352%x 1073 6.83
14 3.63 x 1073 1.08 x 107! 1.12x 1074 743
16 823 x107¢ 224 %1072 1.54 x 1073 7.55
18 128 x 107 1.73 x 1072 578 x 10~° 10.06

Table II. Reduced-basis output error, error bound, and effectivity as a function of N for N = 0, 10.

N e;/,max ;.\CNd“:O,max rlj\/,Nd“ = 0, max 5V,Nd“:10,max njV,Nd“:IO,max
10 8.57 x 1073 344 x 107! 6.98 x 1013 2.1507 x 1072 1.92 x 10*?
12 139 x 1073 1.68 x 107! 1.40 x 10*3 47546 x 1073 6.33 x 10™°
14 409 x 10~* 347 x 1072 1.29 x 10*3 50779 x 1074 1.03 x 10!
16 1.44 x 1073 6.15x 1073 448 x 10 3.6295 x 1073 7.87 x 1070
18 1.16 x 1073 341 %1073 1.70 x 10*3 22570 x 1073 2.70 x 10*°

en(Gr)/ ﬁN(Gr), and thus the more pessimistic bounds (in particular, as reflected in p) are
absent; nevertheless, as Gr increases, there is some degradation in the effectivity due to
the increased strength of the nonlinearity relative to the dissipative terms. We also note that
ty(Gr) is seriously impacted by the cruder estimates (such as p): even with our ‘certification-
oriented’ samples, the hypothesis of Proposition 2.1 may force us to consider higher N than
actually required for accuracy; this is particularly true as we consider the output error.

We now turn to the output error bounds. We define the output effectivity as 1}, . (Gr)=
AL ya(Gr)/|s(Gr)—sy(Gr)|; we also recall (from Lemma 1 and (11)) that |s(Gr)—sy(Gr)| =
|(eN(Gr), " (Gr))y|. We present in Table II ey, =Maxg,|s(Gr) — sx(Gr)|, Ay
nli‘/,Nd“:O,max’ AISV,Nd“: 10, max’ and Vl?\/,N““:lO,max as a function of N; here’ AA]g\/,Nd“,maxE
Maxg, A% ya(Gr), and 17} ya o =Max: My v (Gr). The output converges quite rapidly. 58

Ndu = (0, max’

88We recall that adjoint techniques are typically applied to (i) develop effective a posteriori estimators, and
(ii) (efficiently) increase the accuracy of the output [24]. In our case we focus on (i) since, in part due to
the ‘exponential’ convergence of the RB approximation, and in part due to the 7x(Gr)<1 condition, the ac-
curacy of the uncorrected output is typically more than adequate. However, we can also pursue (ii): we de-
fine 5y yau(Gr)=sy(Gr) + g(un(Gr), wj\’,\;u(Gr); Gr); then (from Lemma 1, (12), and Proposition 3.2) |s(Gr)—
Sy, nau(Gr)] <8N(Gr)AfV‘ﬁ:V (Gr)= A?v ndu(Gr). For our problem (with rather different primal and dual solutions)
we achieve increased accuracy for modest N®'—the error in 5 ya(Gr) is O(1076) at N = 14, N = 12; however,
the effectivity Ajv, Nau(Gr)/|s(Gr) — 5y(Gr)| is poor because we are again ignoring correlations, now between
&V (Gr) and the adjoint error (YN (Gr)— ]\}/\{iu(Gr))' In fact, we can develop procedures in which we devote some

adjoint resources to improve accuracy and the remainder to control effectivity; but the optimal allocation of
resources for given certifiable accuracy requires further deliberation.
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The simple error bound A} \u_o =||L[[y» Ax(Gr)—though clearly computationally convenient,

in particular for many outputs—ignores the correlation between &V(Gr) and " (Gr), and
hence yields very poor effectivities; in contrast (for fixed N sufficiently large), Afv, v —10(GT)

captures the correlation between &V (Gr) and " (Gr), and hence yields good effectivities (ex-
cept for N = 10, for which 7y(Gr)—and hence the second term in (12)—is not yet sufficiently
small). For our particular problem, in which the primal and dual solutions are rather different,
good effectivities are obtained with rather modest dual approximations—N® < N—that thus
increase the online cost by at most a factor of two.

Finally, we note that the online cost to evaluate sy(Gr) and Ay(Gr), Ay .. (Gr) for any

new Gr is very small: first, because N (and N%) is very small—thanks to (i) the good
convergence properties of (Sy and hence) Wy and (S%, and hence) W, and (ii) the rigor-

ous and sharp ‘stopping criterion’ provided by Ay(Gr), A} . (Gr); and second, because the

marginal computational complexity to evaluate sy(Gr) and Ay(Gr), Afv, ya(Gr) depends only

on N, N and not on ./"—thanks to the offline/online computational decomposition. For our
example, the online computation time (on a Pentium® M 1.6 GHz processor) for Gr € S
is typically 45 ms for sy(Gr), 20 ms for Ay(Gr), and an additional 10 ms for A} \..(Gr);
the resulting computational savings relative to finite element approaches are significant, typ-
ically O(100). Since the online computation time is independent of 4", the computational
economies will be even more significant for more complex problems in particular in three
space dimensions—without compromising rigorous certainty.
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