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SUMMARY

We present a technique for the evaluation of linear-functional outputs of parametrized elliptic partial
di�erential equations in the context of deployed (in service) systems. Deployed systems require real-time
and certi�ed output prediction in support of immediate and safe (feasible) action. The two essential
components of our approach are (i) rapidly, uniformly convergent reduced-basis approximations, and (ii)
associated rigorous and sharp a posteriori error bounds; in both components we exploit a�ne parametric
structure and o�ine–online computational decompositions to provide real-time deployed response. In this
paper we extend our methodology to the parametrized steady incompressible Navier–Stokes equations.
We invoke the Brezzi–Rappaz–Raviart theory for analysis of variational approximations of non-linear

partial di�erential equations to construct rigorous, quantitative, sharp, inexpensive a posteriori error
estimators. The crucial new contribution is o�ine–online computational procedures for calculation of
(a) the dual norm of the requisite residuals, (b) an upper bound for the ‘L4(�) − H 1(�)’ Sobolev
embedding continuity constant, (c) a lower bound for the Babu�ska inf–sup stability ‘constant,’ and (d)
the adjoint contributions associated with the output. Numerical results for natural convection in a cavity
con�rm the rapid convergence of the reduced-basis approximation, the good e�ectivity of the associated
a posteriori error bounds in the energy and output norms, and the rapid deployed response. Copyright
? 2005 John Wiley & Sons, Ltd.
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774 K. VEROY AND A. T. PATERA

1. INTRODUCTION

We consider here the parametrized steady incompressible Navier–Stokes equations: Given
�∈D⊂RP, we �nd a ue(�) in X such that g(ue(�); v;�)=0, ∀v∈X . Here, � represents an
input parameter; D is the associated parameter domain; ue(�)= (ue1(�); u

e
2(�)) is the velocity;

X (�) is an appropriate divergence-free space (in Reference [1] we consider treatment of
the pressure and hence non-divergence-free velocity spaces); �⊂R2 is the spatial domain, a
typical point of which shall be denoted x=(x1; x2); and g is the weak form of the Navier–
Stokes equations. Our interest is typically not in the velocity �eld per se, but rather in a (say,
single) output se(�) expressed as L(ue(�)); in this paper L is a bounded linear functional,
though more generally we may consider non-linear outputs. We thus arrive at an implicit
input–output relationship �→ se(�), evaluation of which requires solution of the underlying
partial di�erential equation.
Our (or an) interest is in ‘deployed’ systems: systems that are in service, in operation, in

the �eld. Typical computational tasks include parameter estimation (inverse problems) and
adaptive design (optimization) in support of an action. The computational requirements on
the forward evaluations �→ se(�) are formidable: the evaluation must be real-time—as the
action must be immediate; and the evaluation must be certi�ed (endowed with a rigorous
error bound)—as the action must be safe and feasible.
The two essential components of our approach are (i) rapidly, uniformly convergent reduced-

basis (RB) approximations, and (ii) associated rigorous and sharp a posteriori error bounds;
in both components we exploit a�ne parametric structure and o�ine–online computational
decompositions to provide extremely rapid deployed=marginal response time. (Low marginal
cost implies low asymptotic average cost; our methods are thus also relevant to non real-time
many-query applications.) RB approximation [2–7] takes advantage of the dimension reduc-
tion a�orded by the (smooth) parametrically-induced solution manifold: successful application
to the incompressible Navier–Stokes equations [8–10] is well documented; our emphasis is
thus on the development and application of rigorous a posteriori error estimation procedures.
To construct our a posteriori estimators, we invoke the Brezzi–Rappaz–Raviart (BRR)

theory for analysis of variational approximations of nonlinear partial di�erential equations
[11–14]. Typically, the BRR framework provides a non-quantitative a priori or a posteriori
justi�cation of asymptotic convergence. In our context, the challenge—and contribution—is the
development of actual a posteriori error estimators that are rigorous, quantitative, sharp, and
inexpensive (real-time); we shall see that the RB/o�ine–online context is a unique opportunity
to render the BRR theory completely predictive.
Our key new ingredients are appropriate approximations and associated o�ine–online com-

putational procedures for calculation of (a) the dual norm of the requisite residuals, (b) an
upper bound for the ‘L4(�) − H 1(�)’ Sobolev embedding continuity constant [15, 16], (c)
a lower bound for the Babu�ska inf–sup stability factor, and (d) the adjoint contributions
associated with the output. Our constructions, applied to the Burgers problem in Reference
[17], derive from our earlier work on RB a posteriori error estimators for somewhat simpler
parametrized elliptic equations: coercive linear [18], non-coercive linear [1, 19], and monotonic
non-linear problems [19].
In Section 2 we present our model problem, in Section 3 we summarize the RB approxi-

mation, in Section 4 we develop the a posteriori error estimators and in Section 5 we present
numerical results.
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CERTIFIED REAL-TIME SOLUTION OF INCOMPRESSIBLE NAVIER–STOKES EQUATIONS 775

2. NATURAL CONVECTION AT Pr=0

We consider the problem of natural convection at Prandtl number Pr=0 (see Reference [1] for
treatment of Pr �= 0) in a cavity �= [0; 4]×[0; 1] [20, 21]: Given �≡Gr (the Grashof number)
in D≡ [1; 105], we �nd a velocity ue(Gr)∈X such that g(ue(Gr); v;Gr)=0, ∀v∈X . Here, X
is the divergence-free subspace of (H 1

0 (�))
2 imbued with inner product (w; v)X =

∫
� vi; jwi; j

(here vi; j denotes @vi=@xj and repeated physical indices imply summation) and norm
‖w‖X =

√
(w;w)X ; and g(·; ·;Gr):X ×X →R is given by

g(w; v;Gr)≡ a0(w; v) + 1
2 a1(w;w; v)−Gr F(v) (1)

where a0(w; v)≡ ∫
� vi; jwi; j (bilinear), a1(w; z; v)≡ −∫

� vi; j (wizj+wjzi) (trilinear), and F(v)≡
1
4

∫
� x1v2 (linear bounded).‡ For our output we take se(Gr)=L(ue(Gr)), where L(v)=

|�m|−1
∫
�m

v2; here; �m=]0:85; 1:15[× ]0:42; 0:58[ is a small measurement region of area
|�m|=4:7× 10−2.
We next introduce a ‘truth’ �nite element approximation space§ Y ⊂X of dimension N

(with inner product and norm inherited from X ). Our ‘truth’ approximation is then given
by u(Gr)∈Y , s(Gr)∈R, where g(u(Gr); v;Gr)=0, ∀v∈Y , and s(Gr)=L(u(Gr)). We shall
build our RB projection upon (and measure our RB error with respect to) this discrete truth
approximation; we thus assume thatN is su�ciently large that ‖u(Gr)−ue(Gr)‖X and |s(Gr)−
se(Gr)| is acceptably small for all Gr ∈D (see Reference [22] for relevant a posteriori error
estimation procedures). Clearly, our formulation must be stable and e�cient as N→∞.
For given z ∈Y , we de�ne the derivative bilinear form dg(·; ·; z):Y ×Y →R as

dg(w; v; z)≡ a0(w; v) + a1(w; z; v) (2)

such that

g(z + w; v;Gr)= g(z; v;Gr) + dg(w; v; z) + 1
2 a1(w;w; v) (3)

The inf–sup parameter and continuity constant are then given by �(z)≡ infw∈Y supv∈Y
dg(w; v; z)=‖w‖Y ‖v‖Y and �(z)≡ supw∈Y supv∈Y dg(w; v; z)=‖w‖Y ‖v‖Y , respectively. We note
from the H�older inequality that

|a1(w; z; v)|6�2‖w‖Y ‖z‖Y ‖v‖Y (4)

and hence that �(z)61 + �2‖z‖Y ; here,
�≡
√
2 sup

v∈Y
‖v‖L4(�)=‖v‖Y (5)

is a Sobolev embedding constant [15, 16] and ‖v‖Lp(�)≡ (
∫
�(vivi)

p=2)1=p.
We shall make two (veri�able) hypotheses on the form of our problem and associated

solutions. The �rst hypothesis, H-I, is a�ne parameter-dependence: g(w; v;Gr)=
∑Q

q=1	q(Gr)

‡We choose the scaling of Reference [20]; the alternative scaling of Reference [21] may enjoy some conditioning
advantages [1].

§We choose Y to be the (discretely) incompressible space of dimension N=4762 derived from a Taylor–Hood
P2 − P1 approximation space [8] with 5538 velocity and 776 pressure degrees-of-freedom.
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(a) (b)

Figure 1. Plots of: (a) velocity pro�les for Gr=1:0 and 1:0× 105; and (b) the output s(Gr).

gq(w; v), where 	q :D→R and gq:Y ×Y →R, q=1; : : : ; Q, are Gr-dependent functions and
Gr-independent forms, respectively. For our particular problem it is very simple to verify
H-I a priori: Q=2. Our second hypothesis, H-II, is related to well-posedness: our manifold
{u(Gr)|Gr ∈D} is a nonsingular (isolated) solution branch; thus �(u(Gr))¿�0¿0, ∀Gr ∈D.
We can verify H-II a posteriori.
Our truth solutions con�rm the �ow behaviour previously reported for this model natural-

convection problem [20, 21]. For low Gr the �ow is single-cell; at higher Gr the �ow smoothly
evolves to a three-cell pattern [20, 21]—the three-cell pattern is ‘clearly identi�able’ only for
Gr¿5:0× 104. For lower Gr the �ow is essentially Stokes; signi�cant inertial behaviour is
�rst evinced at Gr=104. We show in Figure 1(a) u2(x1 ∈ [0; 4]; x2 = 1

2 ;Gr)=Gr for Gr=1
and Gr=105; and in Figure 1(b) we present s(Gr) for Gr ∈ [1; 105]. The output—chosen to
re�ect the one-cell to three-cell transition—is not too remarkable, with deviations from the
Stokes limit only for Gr ∈ [104; 105]¶ (see Reference [1] for a more interesting Pr �= 0 Nusselt
output).

3. REDUCED-BASIS APPROXIMATION

3.1. Formulation

We �rst introduce positive integers N6Nmax and associated index sets N≡{1; : : : ; N} and
Nmax≡{1; : : : ; Nmax}. Then, given prescribed parameter points Grn ∈D, 16n6Nmax, we intro-
duce nested parameter samples SN ≡{Gr1; : : : ; GrN} and associated nested Lagrangian [7] RB
spaces WN ≡ span{�n≡ u(Grn); 16n6N} for 16N6Nmax. (In practice, the basis functions are
Gram–Schmidt orthogonalized with respect to (·; ·)Y .)

¶To achieve high accuracy and in particular rigorous error bounds we must approximate u(Gr) and only then
s(Gr)=L(u(Gr)); the relatively complex parametric dependence of the former (Figure 1(a)), not the relatively
simple parametric dependence of the latter (Figure 1(b)), thus determines the di�culty of the RB task.
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The RB (Galerkin) approximation uN (Gr)∈WN , sN (Gr)∈R, then satis�es g(uN (Gr);
v;Gr)=0, ∀v∈WN ; sN (Gr)=L(uN (Gr)). The critical observation is that the solution u(Gr)
resides on a one-dimensional smooth manifold. (The regularity of the velocity �eld in Gr
may be deduced from the equations for the sensitivity derivatives; the stability and continuity
properties of dg are crucial.) Thus, by restricting attention to this parametrically-induced man-
ifold, we can very accurately approximate u(Gr), ∀Gr ∈D, by a space of dimension N
N.
We con�rm this conjecture empirically in Section 5.

3.2. O�ine–online decomposition

The critical computational kernel—and dominant computational complexity—is the inner
Newton iteration for uN (Gr). We pursue an o�ine–online computational procedure [4, 9, 19, 23];
detailed development for the (analogous) Burgers equation is described in Reference [17]
and for Navier–Stokes in Reference [1], and we thus restrict ourselves here to a brief
summary.
In the o�ine stage, performed once, we (i) solve for the RB functions �n, ∀n∈Nmax, at cost

O(NmaxN·NS)—here ·NS refers to a scaling exponent (¿1) associated with the truth approx-
imation Navier–Stokes solution procedure, and (ii) form the parameter-independent matrices
and vectors required by the Newton kernel, at dominant cost (exploiting sparsity) O(N 3

maxN).
In the online stage—performed many times, for each new value of Gr—we simply assemble
and invert the requisite (dense) N ×N Jacobian, at total cost O(N 3).|| The online complexity
is independent of N, yielding extremely fast deployed response.

3.3. A dual problem

We shall also need a dual problem [18, 24, 25] associated with our output functional L.
Towards that end, we �rst introduce an adjoint  N (Gr)∈Y satisfying the linear problem

dg(’;  N (Gr); uN (Gr) + 1
2 e

N (Gr))= − L(’); ∀’∈Y (6)

where uN (Gr)∈WN is our RB approximation of Section 3.1 and eN (Gr)≡ u(Gr) − uN (Gr);
well-posedness is discussed in Section 4.1.1. We may now readily demonstrate (under the
assumption that uN (Gr) and  N (Gr) exist)

Lemma 1
For any �∈Y , s(Gr)− sN (Gr)= g(uN (Gr); �;Gr) + g(uN (Gr);  N (Gr)− �;Gr).

Proof
The proof is a particular case of a more general result for adjoint approximations for non-
linear problems [25]. We note that −L(eN (Gr))=dg(eN (Gr);  N (Gr); uN (Gr)+1

2 e
N (Gr))=

a0(eN (Gr);  N (Gr))+a1(eN (Gr); uN (Gr)+ 1
2 e

N (Gr);  N (Gr))= a0(u(Gr)−uN (Gr);  N (Gr))+
a1(u(Gr) − uN (Gr); 12 (u(Gr) + uN (Gr));  N (Gr)); but by symmetry of a1 with respect to

||As an example of assembly, we consider the representative Jacobian term a1(�uN ; 
uN ; �i)=∑N
j = 1

∑N
k = 1 
uN ka1(�j; �k ; �i)�uN j; 16i6N (∗); here 
uN =

∑N
k=1 
uN k�k and �uN =

∑N
j=1 �uN j�j are the pre-

vious iterate and current update, respectively. In the o�ine stage we form and store a1(�j; �k ; �i), 16i; j; k6Nmax;
in the online stage we perform the 
uN , �uN -weighted sum (∗)—at cost O(N 3).
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778 K. VEROY AND A. T. PATERA

the �rst two arguments, a1(u(Gr)− uN (Gr); 12 (u(Gr) + uN (Gr));  N (Gr))= 1
2 a1(u(Gr); u(Gr);

 N (Gr)) − 1
2 a1(uN (Gr); uN (Gr);  N (Gr)); hence −L(eN (Gr))=GrF( N (Gr)) − [a0(uN (Gr);

 N (Gr))+ 1
2 a1(uN (Gr); uN (Gr);  N (Gr))]= −g(uN (Gr);  N (Gr);Gr): The result then follows

from linearity of g(w; v;Gr) in v.

Lemma 1 shall be important in developing our a posteriori output error estimators.
To construct our output error estimators we shall also require an RB adjoint approxima-

tion: Given prescribed parameter points Grdu; n ∈D, 16n6N du
max, we introduce nested parameter

samples SduN du ≡{Grdu;1; : : : ; Grdu; N
du} and associated nested RB spaces W du

N du ≡ span{�n≡  Nmax

(Grdu;n); 16n6N du} for 16N du6N du
max;  N

N du (Gr)∈W du
N du then satis�es dg(’;  N

N du (Gr);
uN (Gr))= − L(’), ∀’∈W du

N du . This RB dual problem readily admits an o�ine–online de-
composition; the online e�ort to compute  N

N du (Gr) will typically be considerably less than
the online e�ort to compute uN (Gr), since the former is equivalent to a single Newton iteration
of the latter.

4. A POSTERIORI ERROR ESTIMATION

We �rst motivate the need for a posteriori error estimation. Given a RB solution uN (Gr), many
questions can arise: Is there even a solution u(Gr) near uN (Gr)?; Is |s(Gr)−sN (Gr)|6	stol (the
maximum acceptable error)?; Is s(Gr)6Cconstraint (say, a feasibility condition in a design opti-
mization)? If these questions cannot be answered, we may propose the wrong—and potentially
unsafe or infeasible—action in the deployed context. A fourth question is also important: Is N
too large, |s(Gr)− sN (Gr)|
	stol, with an associated steep N 3 e�ciency penalty? In this case,
an overly conservative approximation may jeopardize the real-time response and associated
action. Finally, we may also consider the e�ciency of the samples SN and associated RB
spaces WN : Do we satisfy our global ‘acceptable error level’ condition, |s(Gr)−sN (Gr)|6	stol,
∀Gr ∈D, for (close to) the smallest possible value of N?
In short, the essentially ad hoc nature of RB discretizations, the strongly superlinear scaling

(with N ) of the RB online complexity, and the particular needs of deployed real-time systems
demand rigorous and quantitative a posteriori error estimators.

4.1. Brezzi–Rappaz–Raviart theory

4.1.1. Energy bounds. We �rst de�ne the dual norm of the residual, 	N (Gr)≡ supv∈Y g(uN

(Gr); v;Gr)=‖v‖Y , and the inf–sup and continuity constants associated with the derivative at
uN (Gr), �N (Gr)≡�(uN (Gr)) and �N (Gr)≡ �(uN (Gr)), respectively. We further introduce a
lower bound for �N (Gr) (to be developed in Section 4.2.3), �̃N (Gr): we require 06�̃N (Gr)6
�N (Gr), ∀Gr ∈D.
We next introduce the key parameters required by the BRR theory [11–13]. First, we de�ne

a proximity indicator (a ‘non-dimensional’ measure of the residual), 
N (Gr)≡ 2�2	N (Gr)=

�̃
2
N (Gr). Second, we de�ne our bound for the error in the Y norm as

�N (Gr)≡ �̃N (Gr)�−2(1−
√
1− 
N (Gr)) (7)

We can now state [12, 14].

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773–788
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Proposition 2.1
For 
N (Gr)¡1, there exists a unique solution u(Gr)∈B(uN (Gr); �̃N (Gr)=�2), where
B(z; r)≡{y∈Y |‖y − z‖Y¡r}; furthermore, ‖u(Gr)− uN (Gr)‖Y6�N (Gr).

Proof
Our demonstration is only a very minor variation on the proof given in Reference [12, Theorem
2.1]; we simply specialize the general result to our particular problem [17]. (Note also that our
context is �nite-dimensional—since our bounds are with respect to the truth approximation—
and hence various hypotheses simplify.) We �rst note from (1), (2), and (4) that

g(w2; v;Gr)− g(w1; v;Gr)=
∫ 1

0
dg(w2 − w1; v;w1 + t(w2 − w1)) dt (8)

and

|dg(w; v; z2)− dg(w; v; z1)|= |a1(w; z2 − z1; v)|6�2‖w‖Y ‖v‖Y ‖z2 − z1‖Y (9)

We next introduce the operator HGr(w), w∈Y →HGr(w)∈Y , de�ned as

dg(HGr(w); v; uN (Gr))=dg(w; v; uN (Gr))− g(w; v;Gr); ∀v∈Y (10)

note (10) is well-posed for all w∈Y (�nite-dimensional) thanks to our hypothesis 
N (Gr)¡1
and hence �N (Gr)¿0. A �xed point of HGr(w), HGr(w∗)=w∗, implies a zero of g,
g(w∗; v;Gr)=0, ∀v∈Y .
We now consider w1 ∈B(uN (Gr); �), w2 ∈B(uN (Gr); �). It follows from (8)–(10) that

‖HGr(w2)−HGr(w1)‖Y6(�2�=�̃N (Gr))‖w2−w1‖Y ; hence ‖HGr(w2)−HGr(w1)‖Y¡‖w2−w1‖Y
for all �∈ [0; �̃N (Gr)=�2[. We can further prove that, for w∈B(uN (Gr); �),

‖HGr(w)− uN (Gr)‖Y 6 �̃N (Gr)−1(	N (Gr) +
∫ 1

0
�2‖t(w − uN (Gr))‖Y ‖w − uN (Gr)‖Y dt)

6 �̃N (Gr)−1(	N (Gr) + 1
2 �

2�2)

hence HGr(w) maps B(uN (Gr); �) into itself for all �∈ [�N (Gr); �̃N (Gr)�−2(1 +√
1− 
N (Gr))]. We can thus conclude from the contraction mapping theorem that for all

�∈ [�N (Gr); �̃N (Gr)�−2[ there exists a unique solution u(Gr)∈B(uN (Gr); �) satisfying
g(u(Gr); v;Gr)=0, ∀v∈Y . This completes the proof.

We may also now readily prove

Corollary 2.2
For 
N (Gr)6 1

2 , �(u(Gr))¿�̃N (Gr)=
√
2.

Proof
It follows directly from Theorem 2.1 and Equation (1.2) of Reference [12] that, for
�̃N (Gr)−1�2‖u(Gr)−uN (Gr)‖Y¡1, �(u(Gr))¿�̃N (Gr)−�2‖u(Gr)−uN (Gr)‖Y . However, from

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:773–788



780 K. VEROY AND A. T. PATERA

our Proposition 2.1 and (7) (for 
N (Gr)6 1
2 ) �2‖u(Gr) − uN (Gr)‖Y6�̃N (Gr)(1 −

√
1
2 ); thus

�(u(Gr))¿�̃N (Gr)(1− (1−
√

1
2 ))= �̃N (Gr)=

√
2.

Corollary 2.2 is essential in con�rming Hypothesis H-II, providing a su�cient (though not
necessary) condition for the well-posedness of the truth approximation. (Corollary 2.2 also
demonstrates existence and uniqueness of  N (Gr) of (6) for 
N (Gr)¡1.)
Finally, we may bound the e�ectivity �N (Gr)≡�N (Gr)=‖eN (Gr)‖Y (recall eN (Gr)≡

u(Gr)− uN (Gr)) in

Corollary 2.3
For 
N (Gr)6 1

2 , �N (Gr)64
N (Gr), where 
N (Gr)≡ �N (Gr)=�̃N (Gr).

Proof
We �rst note from standard duality arguments that 	N (Gr)= ‖êN (Gr)‖Y , where êN (Gr)∈Y
satis�es

(êN (Gr); v)Y = − g(uN (Gr); v;Gr); ∀v∈Y (11)

It then follows from (3) for z= uN (Gr) and w≡ eN (Gr) that g(u(Gr); v;Gr)=
g(uN (Gr); v;Gr) + dg(eN (Gr); v; uN (Gr)) + 1

2 a1(e
N (Gr); eN (Gr); v), and hence ‖êN (Gr)‖Y6

�N (Gr)‖eN (Gr)‖Y + 1
2 �

2‖eN (Gr)‖2Y . We now bound (for 
N (Gr)¡1) ‖eN (Gr)‖Y6�N (Gr)
and (from (7)) �N (Gr)62	N (Gr)=�̃N (Gr) to deduce that 1

2 �N (Gr)6�N (Gr)�̃N (Gr)−1

‖eN (Gr)‖Y+�2	N (Gr)�̃N (Gr)−2�N (Gr). However, from our assumption on 
N (Gr), we obtain

�2	N (Gr)=�̃
2
N (Gr)= 1

2 
N (Gr)6 1
4 ; the desired result directly follows.

Corollary 2.3, which provides a lower bound for ‖eN (Gr)‖Y , relates to the sharpness of
�N (Gr); in Section 5 we provide a more quantitative discussion.

4.1.2. Output bounds. We �rst introduce the adjoint (or dual) residual, Rdu; NN du (’;Gr)≡
− L(’) − dg(’;  N

N du (Gr); uN (Gr)), ∀’∈Y ; the adjoint residual dual norm 	du; NN du (Gr)≡
sup’∈Y Rdu; NN du (’;Gr)=‖’‖Y ; and, for 
N (Gr)¡1, the adjoint error bound,

�du; N
N du (Gr)≡ 2	du; NN du

�̃N (Gr)(1 +
√
1− 
N (Gr))

+
1−√

1− 
N (Gr)
1 +

√
1− 
N (Gr)

‖ N
N du (Gr)‖Y (12)

Our output error bound is then given by �s
N;N du (Gr)≡‖L‖Y ′�N (Gr) for N du = 0 (a notational

convenience), and

�s
N;N du (Gr)= |g(uN (Gr);  N

N du (Gr);Gr)|+ 	N (Gr)�du; N
N du (Gr) (13)

for 16N du6N du
max; here ‖L‖Y ′ ≡ sup’∈Y L(’)=‖’‖Y is independent of Gr. (The only new com-

putational ingredients are 	du; NN du (Gr), ‖ N
N du (Gr)‖Y , and |g(uN (Gr);  N

N du (Gr);Gr)|.)
We may now prove

Lemma 3.1
For 
N (Gr)¡1, ‖ N (Gr)−  N

N du (Gr)‖Y6�du; N
N du (Gr).
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Proof
We note that  N (Gr)−  N

N du (Gr) satis�es dg(’;  N (Gr)−  N
N du (Gr); uN (Gr))=Rdu; NN du (’;Gr)−

1
2 a1(’; eN (Gr);  N (Gr) −  N

N du (Gr)) − 1
2 a1(’; eN (Gr);  N

N du (Gr)); the result then follows from
(4), Proposition 2.1, (7), and (12).

And thus

Proposition 3.2
For 
N (Gr)¡1, |s(Gr)− sN (Gr)|6�s

N;N du (Gr).

Proof
For N du = 0 we invoke continuity of L and Proposition 2.1; for N du¿0 we invoke Lemma 1
(for �=  N

N du (Gr)), Cauchy–Schwarz, Lemma 3.1, and (13).

In Section 5 we shall investigate the e�ectivity of this output error bound.

4.2. Construction of error estimators

The framework described above is essentially the nonlinear extension of the much simpler
linear a posteriori error estimator result ‖u(Gr)− uN (Gr)‖Y6	N (Gr)=�̃N (Gr) [19]—to which
our non-linear error estimator, �N (Gr), reduces in the limit that 	N (Gr) tends to zero. The
challenge, as in the linear case [18, 19], is the development of calculable, predictive error
estimators: error estimators that are quantitative, rigorous, sharp, and inexpensive—online
complexity independent of N.

4.2.1. The dual norm of the residual(s). We now consider the calculation of 	N (Gr)=
‖êN (Gr)‖Y . We �rst note from (11) that êN (Gr)∈Y satis�es

(êN (Gr); v)Y =GrF(v)−∑
n
a0(�n; v)uN n(Gr)

−∑
n

∑
n′

1
2 a1(�n; �n′ ; v)uN n(Gr)uN n′(Gr); ∀v∈Y (14)

where
∑

m with no upper limit explicitly provided shall denote
∑N

m=1. (We recall that uN (Gr)
may be expressed as

∑
n uN n(Gr)�n.) It follows from linearity that êN (Gr)=

Gr ẑ0 +
∑

n ẑ
1
nuN n(Gr) +

∑
n

∑
n′ ẑ2nn′uN n(Gr)uN n′(Gr), where ẑ0 ∈Y satis�es (ẑ0; v)Y =F(v),

∀v∈Y , ẑ1n ∈Y satis�es (ẑ1n; v)Y =−a0(�n; v), ∀v∈Y , ∀n∈Nmax, and ẑ2nn′ ∈Y satis�es (ẑ2nn′ ; v)Y =
− 1

2 a1(�n; �n′ ; v), ∀v∈Y , ∀n; n′ ∈N2max. We thus obtain

‖êN (Gr)‖2Y =Gr2(ẑ0; ẑ0)Y +
∑
n
uN n(Gr)

{
2Gr(ẑ0; ẑ1n)Y +

∑
n′

uN n′(Gr)
{
2Gr(ẑ0; ẑ2nn′)Y

+(ẑ1n; ẑ
1
n′)Y +

∑
n′′

uN n′′(Gr)
{
2(ẑ1n; ẑ

2
n′ n′′)Y

+
∑
n′′′

uN n′′′(Gr)
{
(ẑ2nn′ ; ẑ2n′′n′′′)Y

}}}}
(15)

which is a nested quadruple sum.
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The o�ine–online decomposition is now clear. In the o�ine stage, performed once, we (i)
solve for the ẑ0, ẑ1n , ∀n∈Nmax, and ẑ2nn′ , ∀n; n′ ∈N2max, at dominant cost O(N 2

maxN
·Po)—here ·Po

refers to a scaling exponent (¿1) associated with the (divergence-free) truth-approximation
Poisson solution procedure, and then (ii) form the relevant parameter-independent inner prod-
ucts, (ẑ0; ẑ0)Y ; : : : ; (ẑ2nn′ ; ẑ2n′′n′′′)Y , ∀n; n′; n′′; n′′′ ∈N4max, at dominant cost (exploiting sparsity)
O(N 4

maxN). In the online stage—performed many times, for each new value of Gr—we sim-
ply evaluate the requisite quadruple sum, (15), at dominant cost O(N 4). The online complexity
is independent of N: although the N 4 scaling is less than pleasant, in practice N is quite
small; furthermore, this calculation is invoked only once (in contrast to the Newton kernel).
We may develop a similar procedure for the dual norm of the adjoint residual, 	du; NN du (Gr); the
online complexity is O(N 2(N du)2), independent of N.

4.2.2. The Sobolev constant. In actual practice, and solely for simplicity, we compute an
upper bound for the Sobolev constant �, replacing (the divergence-free space) Y with Ỹ ≡
[(H 1

0 (�))
2]truth; in order to avoid excessive nomenclature, we simply rede�ne �≡√

2 supv∈Ỹ ‖v‖L4(�)=‖v‖Y . As our point of departure, we note [15, 16] that �=(2=�̂min)1=2,
where (�̂; �̂)∈ (R+; Ỹ ) satis�es the Euler–Lagrange equation (�̂; v)Y = �̂

∫
� �̂j�̂j�̂ivi, ∀v∈ Ỹ ,

‖�̂‖4L4(�) = 1, and (�̂min; �̂min) denotes the ground state. To solve this non-linear eigenproblem,
and in particular to ensure that we realize the ground state, we pursue a homotopy procedure.
Towards that end, we introduce �∈ [0; 1] and associated increment ��¡1: (�(�); �(�))∈

(R+; Ỹ ) then satis�es

(�(�); v)Y = �(�)
(
�

∫
�
�j(�)�j(�)�i(�)vi + (1− �)

∫
�
�i(�)vi

)
; ∀v∈ Ỹ

�‖�‖4L4(�) + (1− �)‖�‖2L2(�) = 1 (16)

(�min(�); �min(�)) shall denote the ground state. We observe that (�min(1); �min(1))=
(�̂min; �̂min), and that (�min(0); �min(0)) is the lowest eigenpair of a standard (vector) Laplacian
eigenproblem. Our homotopy procedure is simple: we �rst set �old = 0 and �nd
(�min(0); �min(0)) by standard techniques; then, until �new =1, we set �new← �old +��, solve
(16) for (�min(�new); �min(�new)) by Newton iteration initialized to (�min(�old); �min(�old)), and
update �old← �new. For our particular domain, we �nd (o�ine) �=0:4416; since � is
parameter-independent, no online computation is required.

4.2.3. The inf–sup lower bound. We now consider the construction of �̃N (Gr), a lower bound
for �N (Gr). We note that, in contrast to �, �N (Gr) must be calculated with respect to the
divergence-free space Y .
We �rst de�ne, for given Gr ∈D, the linear operator w∈Y →TGr

N w∈Y as (TGr
N w; v)Y =

dg(w; v; uN (Gr)), ∀v∈Y . We then de�ne, for t ∈R and given Gr,

T(w; v; t;Gr)≡ (TGr
Nmaxw; TGr

Nmaxv)Y

+ t[a1(w; u′
Nmax (Gr); TGr

Nmaxv) + a1(v; u′
Nmax (Gr); TGr

Nmaxw)] (17)
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where u′
Nmax (Gr)(=duNmax (Gr)=dGr)∈WNmax satis�es dg(u′

Nmax (Gr); v; uNmax (Gr))=F(v),
∀v∈WNmax . Next, for t ∈R and given Gr, we introduce F(t;Gr)≡ inf v∈Y T(v; v; t;Gr)=‖v‖2Y ,
and �N (t;Gr)≡�2‖uN (Gr + t)− uNmax (Gr)− tu′

Nmax (Gr)‖Y . Then
Lemma 4.1
The function F(t;Gr) is concave in t. Hence, given t1¡t2, for all t ∈ [t1; t2], F(t;Gr)¿
min{F(t1; Gr);F(t2; Gr)}.
Proof
We de�ne �=(t2 − t)=(t2 − t1)∈ [0; 1] such that t= �t1 + (1− �)t2. It follows from (17) that
T(v; v; t;Gr)= �T(v; v; t1;Gr)+(1−�)T(v; v; t2;Gr) and hence F(t;Gr)= inf v∈Y (�T(v; v; t1;
Gr)+(1−�)T(v; v; t2;Gr))=‖v‖2Y¿�F(t1;Gr)+(1−�)F(t2;Gr)¿min{F(t1;Gr);F(t2;Gr)}.

We shall also need

Lemma 4.2
For given Gr ∈D, Gr ∈D, and t≡Gr − Gr, the inf–sup parameter satis�es �N (Gr)¿

− �N (t;Gr) +
√
max{F(t;Gr); �2N (t;Gr)}¿0.

Proof
We �rst de�ne �(w)≡‖TGr

N w‖Y =‖w‖Y and express TGr
N w=TGr

Nmaxw+(T
Gr
N w−TGr

Nmaxw) to obtain

�2(w)= {‖TGr
Nmaxw‖2Y + ‖TGr

N w − TGr
Nmaxw‖2Y + 2(TGr

Nmaxw; TGr
N w − TGr

Nmaxw)Y }=‖w‖2Y (18)

We next note that, for t=Gr −Gr,

(TGr
Nmaxw; TGr

N w − TGr
Nmaxw)Y = a1(w; uN (Gr)− uNmax (Gr); TGr

Nmaxw)= ta1(w; u′
Nmax (Gr); TGr

Nmaxw)

+ a1(w; uN (Gr)− uNmax (Gr)− tu′
Nmax (Gr); TGr

Nmaxw) (19)

furthermore, from (4)

|a1(w; uN (Gr)− uNmax (Gr)− tu′
Nmax (Gr); TGr

Nmaxw)|

6�N (t;Gr)‖w‖Y ‖TGr
Nmaxw‖Y

6�N (t;Gr)‖w‖Y (‖TGr
N w‖Y + ‖TGr

Nmaxw − TGr
N w‖Y )

6�N (t;Gr)�(w)‖w‖2Y + 1
2 �

2
N (t;Gr)‖w‖2Y + 1

2‖TGr
Nmaxw − TGr

N w‖2Y (20)

We conclude from (17)–(20) that �2(w)¿T(w;w; t;Gr)=‖w‖2Y − 2�N (t;Gr)�(w)− �2N (t;Gr);
this quadratic inequality (recall �(w)¿0) then yields �(w)¿ − �N (t;Gr)

+
√
max{T(w;w; t;Gr)=‖w‖2Y ; �2N (t;Gr)}. It is readily shown [19] that �N (Gr)= infw∈Y �(w),

and hence �N (Gr)¿− �N (t;Gr) +
√
max{F(t;Gr); �2N (t;Gr)}.

We may now construct our inf–sup lower bound, �̃N (Gr).
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We �rst introduce a partition PJ ≡{Rj ≡]Gr
j
−; Gr

j
+[; 16j6J} such that Rj ∩ Rj′

= ∅,
16j¡j′6J , and ∪ J

j=1 R
j
=D; we further de�ne logGr

j
= 1

2(logGr
j
− + logGr

j
+), 16j6J .

Then, for given Gr ∈D, our lower bound is
�̃N (Gr)= − �N (t;Gr) +

√
max{min{F(0;Gr);F(t∗;Gr)}; �2N (t;Gr)} (21)

where Gr=Gr
IGr
, Gr±=Gr

IGr
± , t=Gr −Gr, t±=Gr± −Gr, and t∗= t+ (respectively, t−)

if t¿0 (respectively, t¡0); here I :D→{1; : : : ; J} is a mapping such that Gr ∈RIGr
. We

may then prove

Proposition 4.3
For all Gr ∈D, �N (Gr)¿�̃N (Gr)¿0.

Proof
The result directly follows from Lemma 4.1, Lemma 4.2, and (21).

Proposition 4.3 only guarantees a lower bound; to ensure a good lower bound, our partition
must be su�ciently �ne. We shall say that a partition PJ is 	�-conforming if

�̃Nmax (Gr)¿	��Nmax (Gr
IGr
)(¿0); ∀Gr ∈D (22)

if (22) is not honoured for any 	� ∈]0; 1[ there will exist Gr ∈D for which the hypothesis of
Proposition 2.1, 
N (Gr)¡1, is not satis�ed, and hence for which certi�cation is impossible.
We now turn to the o�ine–online computational procedure. In the o�ine stage, performed

once, we (i) tabulate F(0;Gr
j
)= (�2Nmax (Gr

j
)) and F(Gr

j
± − Gr

j
;Gr

j
), 16j6J , at domi-

nant cost O(3JN·SV)∗∗—here ·SV refers to a scaling exponent (¿1) associated with the
truth-approximation singular-value solution procedure, and (ii) form the �N -related parameter-
independent inner products (�n; �n′)Y , ∀n; n′ ∈N2max, at dominant cost (exploiting sparsity)
O(N 2

maxN). The properties of F(Gr − Gr;Gr) are crucial. First, F(Gr − Gr;Gr) is con-
cave in Gr − Gr: hence, a �nite number of expensive evaluations su�ce to rigorously con-
struct �̃N (Gr). Second, F(Gr − Gr;Gr) is (sub-)tangent to �2Nmax (Gr) at Gr=Gr—the more
pessimistic bounds such as � appear only in the second-order correction, �N (Gr − Gr;Gr):
hence, J will be ‘small’ (for example, relative to simpler continuity constructions [17]). In
the online stage—performed many times, for each new value of Gr—we need only (i) �nd
Gr=IGr, at cost O(log J ), and (ii) evaluate �N (Gr −Gr;Gr), at dominant cost O(N 2

max).

4.3. Sampling procedure

We �rst construct our primal samples and spaces, SN and WN , 16N6Nmax; we then select
our dual samples and spaces, SduN du and W du

N du , 16N du6N du
max. We pursue (very similar) greedy

optimization procedures [1] for both the primal and dual; in the interest of brevity, we consider
only the former here.
We �rst provide a random parameter test sample �T ∈ (D)nT of size nT, a ‘smallest (energy)

error tolerance’ 	tol;rel;min, and an initial sample SN0 ; we further introduce—since uNmax (Gr) is

∗∗In practice, to determine an 	�-conforming partition PJ—that is, to �nd appropriate Grj±, 16j6J , such that
(22) is satis�ed for prescribed 	� ∈]0; 1[—we must perform additional singular value calculations.
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of course not yet available—
N (Gr) (respectively, �N (Gr)) given by 
N (Gr) (respectively,
�N (Gr)) with �̃N (Gr) replaced by a crude surrogate, �(Gr). We now recurse: Given a sample
SN (initially, SN0), we calculate Gr∗= arg maxGr ∈�T 
N (Gr) and Gr∗∗=
argmaxGr ∈�T|
N (Gr)¡1 �N; rel(Gr), where �N; rel(Gr)≡�N (Gr)=‖uN (Gr)‖Y ; next, if

N (Gr∗)¿1 (respectively, 
N (Gr∗)¡1) we set GrN+1 =Gr∗ (respectively, GrN+1 =Gr∗∗) and
SN+1 = SN ∪GrN+1; we then continue this process until N =Nmax such that 
Nmax (Gr)¡1,
∀Gr ∈�T, and maxGr∈�T �Nmax ;rel(Gr)6	tol; rel;min. It is important to note that �N (Gr) is an
accurate surrogate for the true error that can be calculated very e�ciently—complexity inde-
pendent of N—in the limit of many queries: only the selected (expensive) snapshots must
actually be computed; we may thus choose nT large.
In summary, we can expect that our sequence of spaces WN will provide rapidly certi�able

(thanks to Gr∗) and rapidly convergent (thanks to Gr∗∗) approximations uniformly over D.††

5. NUMERICAL RESULTS

We set 	tol; rel;min =10−6 (see Section 4.3) and 	�=0:5 (see (22)) to construct our RB (pri-
mal) sample and inf–sup partition, respectively; we obtain Nmax =18 and J =39. To present
our numerical results we introduce a random test sample over D, �Test ∈ (D)nTest of size
nTest = 25 (note the sample is in lin(Gr), not log(Gr), and hence most of the points are
in the di�cult range [104; 105]); we further de�ne ‘MaxGr’ to be the maximum over all Gr
in �Test, and ‘AvgGr’ to be the average over all Gr in �Test. We shall discard all results
(N;Gr)∈Nmax×�Test for which our a posteriori bounds are contaminated by round-o� error;
our criterion is (‖êN (Gr)‖Y =‖u(Gr)‖Y )2¡10× 10−16.
We �rst consider the ‘energy’ (or Y ) norm. We present in Table I eN

max;Rel≡
MaxGr(‖eN (Gr)‖Y =‖u(Gr)‖Y ), 
N;max≡MaxGr
N (Gr), �N;max;Rel≡MaxGr�N (Gr)=‖u(Gr)‖Y ,
and �N ≡AvgGr�N (Gr), as a function of N ; we recall that �N (Gr)≡�N (Gr)=‖eN (Gr)‖Y . We
observe that the error decreases very rapidly; that the ‘certi�ability’ hypothesis of Proposi-
tion 2.1, 
N (Gr)¡1, is satis�ed uniformly over �Test for N¿10; and that our error estimator
(when applicable) is indeed a strict and reasonably sharp upper bound—even
maxN∈Nmax MaxGr�N (Gr)=25:7 is well below the worst-case bound of Corollary 2.3.‡‡ Note
that for the rapidly convergent RB approximation, e�ectivities of O(10) su�ce: for a given
accuracy 	 tol, N ′ such that �N ′(Gr)= 	tol—our certi�ably su�cient approximation—is only
slightly larger than N ′′ such that ‖eN ′′

(Gr)‖Y = 	tol—the actually su�cient approximation; the
‘error in the error’ can be large since the error itself decreases so quickly—this also justi�es
our relatively crude inf–sup lower bound.
It is perhaps surprising that the BRR theory—not speci�cally designed for quantitative

application—indeed yields such sharp results. As already noted, as 	N (Gr)→ 0, �N (Gr)∼

††Nevertheless, our sampling procedure is not infallible, and hence it is possible that we encounter (online) a
Gr′ ∈D for which �N (Gr′) is unacceptably large. In this event—note for purposes of rigor, sharpness, and e�-
ciency we always evaluate �N (Gr) online for each new ‘deployed’ Gr value considered—we would need to return
to the o�ine stage and append Gr′ to our sample. To avoid the latter, we typically choose nT reasonably large and
	tol;rel;min conservatively small.

‡‡Note �Nmax (Gr) is unity for Gr ∈ [1; 104] and then smoothly decreases for Gr¿104 to 0.155 at Gr=105; �Nmax is
unity for low Gr and then increases with Gr for Gr¿104 to �Nmax = 8:75 at Gr=105. Thus Corollary 2.3 predicts
(say for N =Nmax) a worst-case e�ectivity of 4�N (Gr=105)=�̃N (Gr=105)= 229:1.
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Table I. Reduced-basis error, proximity measure, error bound, and e�ectivity as a function of N .

N eNmax;Rel 
N;max �N;max;Rel �N

2 4:36× 10−1 ∞ — —
4 1:51× 10−1 ∞ — —
6 4:51× 10−2 ∞ — —
8 3:31× 10−2 4:68× 10+1 — —
10 4:29× 10−3 5:44× 10−1 7:23× 10−3 7.00
12 2:32× 10−3 1:61× 10−1 3:52× 10−3 6.83
14 3:63× 10−5 1:08× 10−1 1:12× 10−4 7.43
16 8:23× 10−6 2:24× 10−2 1:54× 10−5 7.55
18 1:28× 10−6 1:73× 10−2 5:78× 10−6 10.06

Table II. Reduced-basis output error, error bound, and e�ectivity as a function of N for N du = 0, 10.

N esN;max �s
N; N du=0;max �s

N; N du = 0;max �s
N; N du=10;max �s

N; N du=10;max

10 8:57× 10−3 3:44× 10−1 6:98× 10+3 2:1507× 10−2 1:92× 10+2
12 1:39× 10−3 1:68× 10−1 1:40× 10+3 4:7546× 10−3 6:33× 10+0
14 4:09× 10−4 3:47× 10−2 1:29× 10+3 5:0779× 10−4 1:03× 10+1
16 1:44× 10−5 6:15× 10−3 4:48× 10+4 3:6295× 10−5 7:87× 10+0
18 1:16× 10−5 3:41× 10−3 1:70× 10+3 2:2570× 10−5 2:70× 10+0

	N (Gr)=�̃N (Gr), and thus the more pessimistic bounds (in particular, as re�ected in �) are
absent; nevertheless, as Gr increases, there is some degradation in the e�ectivity due to
the increased strength of the nonlinearity relative to the dissipative terms. We also note that

N (Gr) is seriously impacted by the cruder estimates (such as �): even with our ‘certi�cation-
oriented’ samples, the hypothesis of Proposition 2.1 may force us to consider higher N than
actually required for accuracy; this is particularly true as we consider the output error.
We now turn to the output error bounds. We de�ne the output e�ectivity as �s

N;N du (Gr)≡
�s

N;N du (Gr)=|s(Gr)−sN (Gr)|; we also recall (from Lemma 1 and (11)) that |s(Gr)−sN (Gr)|=
|(êN (Gr);  N (Gr))Y |. We present in Table II e s

N;max≡MaxGr|s(Gr) − sN (Gr)|, �s
N;N du = 0;max,

�s
N;N du = 0;max, �

s
N;N du = 10;max, and �s

N;N du = 10;max as a function of N ; here, �s
N;N du ;max≡

MaxGr�s
N;N du (Gr), and �s

N;N du ;max≡MaxGr�s
N;N du (Gr). The output converges quite rapidly.§§

§§We recall that adjoint techniques are typically applied to (i) develop e�ective a posteriori estimators, and
(ii) (e�ciently) increase the accuracy of the output [24]. In our case we focus on (i) since, in part due to
the ‘exponential’ convergence of the RB approximation, and in part due to the 
N (Gr)¡1 condition, the ac-
curacy of the uncorrected output is typically more than adequate. However, we can also pursue (ii): we de-
�ne s̃N; N du (Gr)= sN (Gr) + g(uN (Gr);  N

N du
(Gr);Gr); then (from Lemma 1, (12), and Proposition 3.2) |s(Gr)−

s̃N; N du (Gr)|6	N (Gr)�du; N
N du

(Gr)≡ �̃s
N; N du (Gr). For our problem (with rather di�erent primal and dual solutions)

we achieve increased accuracy for modest N du—the error in s̃N; N du (Gr) is O(10−6) at N =14, N du = 12; however,

the e�ectivity �̃
s
N; N du (Gr)=|s(Gr) − s̃N (Gr)| is poor because we are again ignoring correlations, now between

êN (Gr) and the adjoint error ( N (Gr)− N
N du
(Gr)). In fact, we can develop procedures in which we devote some

adjoint resources to improve accuracy and the remainder to control e�ectivity; but the optimal allocation of
resources for given certi�able accuracy requires further deliberation.
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The simple error bound �s
N;N du=0≡‖L‖Y ′�N (Gr)—though clearly computationally convenient,

in particular for many outputs—ignores the correlation between êN (Gr) and  N (Gr), and
hence yields very poor e�ectivities; in contrast (for �xed N su�ciently large), �s

N;N du = 10(Gr)
captures the correlation between êN (Gr) and  N (Gr), and hence yields good e�ectivities (ex-
cept for N =10, for which 
N (Gr)—and hence the second term in (12)—is not yet su�ciently
small). For our particular problem, in which the primal and dual solutions are rather di�erent,
good e�ectivities are obtained with rather modest dual approximations—N du¡N—that thus
increase the online cost by at most a factor of two.
Finally, we note that the online cost to evaluate sN (Gr) and �N (Gr), �s

N;N du (Gr) for any
new Gr is very small: �rst, because N (and N du) is very small—thanks to (i) the good
convergence properties of (SN and hence) WN and (SduN du and hence) W du

N du , and (ii) the rigor-
ous and sharp ‘stopping criterion’ provided by �N (Gr), �s

N;N du (Gr); and second, because the
marginal computational complexity to evaluate sN (Gr) and �N (Gr), �s

N;N du (Gr) depends only
on N , N du and not on N—thanks to the o�ine=online computational decomposition. For our
example, the online computation time (on a PentiumJ M 1:6 GHz processor) for Gr ∈�Test
is typically 45 ms for sN (Gr), 20 ms for �N (Gr), and an additional 10 ms for �s

N;N du (Gr);
the resulting computational savings relative to �nite element approaches are signi�cant, typ-
ically O(100). Since the online computation time is independent of N, the computational
economies will be even more signi�cant for more complex problems in particular in three
space dimensions—without compromising rigorous certainty.
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